skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kaseorg, Anders"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Transactional objects combine the performance of classical concurrent objects with the high-level programmability of transactional memory. However, verifying the correctness of transactional objects is tricky, requiring reasoning simultaneously about classical concurrent objects, which guarantee the atomicity of individual methods—the property known as linearizability—and about software-transactional-memory libraries, which guarantee the atomicity of user-defined sequences of method calls—or serializability. We present a formal-verification framework called C4, built up from the familiar notion of linearizability and its compositional properties, that allows proof of both kinds of libraries, along with composition of theorems from both styles to prove correctness of applications or further libraries. We apply the framework in a significant case study, verifying a transactional set object built out of both classical and transactional components following the technique oftransactional predication; the proof is modular, reasoning separately about the transactional and nontransactional parts of the implementation. Central to our approach is the use of syntactic transformers oninteraction trees—i.e., transactional libraries that transform client code to enforce particular synchronization disciplines. Our framework and case studies are mechanized in Coq. 
    more » « less